Experimental estimation of ground state energies on quantum computers

Will Kirby

IBM Quantum

william.kirby@ibm.com

IBM Quantum

Outline

Time permitting, I will discuss results of two recent large-scale ground state energy simulation experiments from IBM Quantum.

1. Many-body experiment using Krylov quantum diagonalization (arxiv:2407.14431)

quantum processor to compute eigenenergies of quantum many-body systems on two-dimensional lattices of up to 56 sites, using the Krylov of

algorithm, an analog of the well-known classical diagonalization technique. We construct subspaces of the many-body Hilbert space using Trot

2. Chemistry experiment using sample-based quantum diagonalization (arxiv:2405.05068)

Please interrupt with questions!

$\mathbf{TXiV} > quant-ph > arXiv:2407.14431$	$\exists \mathbf{r} \times \mathbf{i} V > quant-ph > ar \times \mathbf{i} v: 2405.05068$
Quantum Physics	Quantum Physics
[Submitted on 19 Jul 2024 (v1), last revised 3 Oct 2024 (this version, v3)]	[Submitted on 8 May 2024]
Diagonalization of large many-body Hamiltonians on a quantum processor	Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer
Nobuyuki Yoshioka, Mirko Amico, William Kirby, Petar Jurcevic, Arkopal Dutt, Bryce Fuller, Shelly Garion, Holger Haas, Ikko Ha	Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, Petar Jurcevic, William Kirby, Simon Martiel, Kunal Sl
Ritajit Majumdar, Zlatko Minev, Mario Motta, Bibek Pokharel, Pedro Rivero, Kunal Sharma, Christopher J. Wood, Ali Javadi-Abł	Shirakawa, Iskandar Sitdikov, Rong-Yang Sun, Kevin J. Sung, Maika Takita, Minh C. Tran, Seiji Yunoki, Antonio Mezzacapo
The estimation of low energies of many-body systems is a cornerstone of computational quantum sciences. Variational quantum algorithms cau	A universal quantum computer can be used as a simulator capable of predicting properties of diverse quantum systems. Electronic structur
states on pre-fault-tolerant quantum processors, but their lack of convergence guarantees and impractical number of cost function estimation:	practical use cases around the hundred-qubit mark. This appears promising since current quantum processors have reached these sizes. H
experiments to large systems. Alternatives to variational approaches are needed for large-scale experiments on pre-fault-tolerant devices. Her	onto quantum computers yields deep circuits, and for for pre-fault-tolerant quantum processors, the large number of measurements to es

prohibitive runtimes. As a result, realistic chemistry is out of reach of current quantum computers in isolation. A natural question is wheth

computation can relieve quantum processors from parsing all but a core, intrinsically quantum component of a chemistry workflow. Here,

Expt #1: diagonalization of large many-body systems on a quantum processor

Goal: estimate ground state energy of quantum Hamiltonian.

Classically challenging due to exponential Hilbert space dimension^{*}.

Outline of this section:

- 1. Overview of Krylov Quantum Diagonalization (KQD)
- 2. Experimental results

*Assuming general, hard case: sufficiently entangled, supported on exponentially-many basis states, etc.

IBM Quantum

Lanczos/Arnoldi method

= classical method for approximating lowest eigenvalues.

(Very) high-level idea:

1. Initial guess $|\psi_0\rangle \Rightarrow H|\psi_0\rangle \Rightarrow \dots \Rightarrow H^{D-1}|\psi_0\rangle$ 2. (U.S) maximum link \rangle High \rangle High \rangle H² left \rangle = H^{D-1}left \rangle]

3. Lowest eigenvalue of (**H**, **S**) i.e., of $\mathbf{H}\mathbf{v} = \lambda \mathbf{S}\mathbf{v}$, approximates lowest eigenvalue of H

Krylov space

Lanczos/Arnoldi method

Caveat: typically in classical Lanczos(-like) methods, would orthogonalize along the way... challenging in quantum implementations.

Advantage: converges exponentially with D (in ∞ precision arithmetic).

Disadvantage: classically, requires storing entire statevectors $H^i | \psi_0 \rangle \Rightarrow$ exponential overhead.

Can we construct a quantum version that mitigates statevector overhead while keeping fast convergence?¹

Recent review!

6

¹ Parrish and McMahon, https://arxiv.org/abs/1909.08925; Motta *et* al., https://arxiv.org/abs/2312.00178; and many more!

Quantum "Lanczos method" = "Quantum Krylov"

Options for generating Krylov space: multiply $|\psi_0 angle$ by...

- Powers of H same as original Lanczos \Rightarrow nontrivial on quantum but possible in principle.¹
- e^{-Hkdt} this version claimed "Qlanczos."²
- $T_k(H)$ arises naturally from block encoding.³
- e^{iHkdt} many good options e.g. Trotterization, qubitization, etc.

Will focus on last version in this talk.

¹Seki and Yunoki, PRX Quantum 2, 010333 (2021); ²Motta *et αl.*, Nat. Phys. 16, 205–210 (2020); ³Kirby *et αl.*, Quantum 7, 1018 (2023).

Krylov Quantum Diagonalization with real time-evolutions

Majority of works have focused on Krylov states generated by real time-evolution:

$$V = [|\psi_0
angle, U|\psi_0
angle, U^2|\psi_0
angle, \dots, U^{D-1}|\psi_0
angle]$$
 for $U = e^{iHdt}$

Need to estimate on quantum computer

 $\mathbf{H}_{\mathbf{j}\mathbf{k}} = \langle \psi_0 | (U^j)^{\dagger} H U^k | \psi_0 \rangle,$

 $\mathbf{S}_{\mathbf{j}\mathbf{k}} = \langle \psi_0 | (U^j)^{\dagger} U^k | \psi_0 \rangle$

for each j, k = 0, 1, ..., D - 1,

then classically calculate lowest eigenvalue of $\mathbf{H}\mathbf{v} = \lambda \mathbf{S}\mathbf{v} \Rightarrow$ output.

Aside: generalized eigenvalue problems

Regular eigenvalue problem: $Hv = \lambda v$

```
Generalized eigenvalue problem: \mathbf{H}v = \lambda \mathbf{S}v
```

"Eigenvalue problem in non-orthonormal basis" \Rightarrow inner product is $v^{\dagger}Sv$, not $v^{\dagger}v$

Usually solve by converting to regular eigenvalue problem, e.g., $S^{-1}Hv = \lambda v$

...but

here be dragons: if *S* is ill-conditioned, then inverting it requires caution

Estimating matrix elements (basic version)

Targets: $\mathbf{H}_{\mathbf{jk}} = \langle \psi_0 | (U^j)^{\dagger} H U^k | \psi_0 \rangle$, $\mathbf{S}_{\mathbf{jk}} = \langle \psi_0 | (U^j)^{\dagger} U^k | \psi_0 \rangle$.

Can approach using Hadamard test:

 $\text{Yields } \langle X \rangle_a = Re[\langle \psi_0 | (U^j)^{\dagger} P U^k | \psi_0 \rangle], \quad \langle Y \rangle_a = Im[\langle \psi_0 | (U^j)^{\dagger} P U^k | \psi_0 \rangle]$

Estimating matrix elements (better version)

Change target: $\mathbf{H}_{\mathbf{jk}} = \langle \psi_0 | HU^{k-j} | \psi_0 \rangle$, $\mathbf{S}_{\mathbf{jk}} = \langle \psi_0 | U^{k-j} | \psi_0 \rangle$ for $k \ge j$ (below diag. use Hermitianity)

• Note: equal to ideal matrix elements if time-evolution exact.

<u>This assumes</u> U^{k-j} preserves particle number; given this, expectation values come out to $\langle X \otimes P \rangle = Re[e^{-i\phi} \langle \psi_0 | PU | \psi_0 \rangle], \langle Y \otimes P \rangle = Im[e^{-i\phi} \langle \psi_0 | PU | \psi_0 \rangle].$ classically-calculable phase from $U^{k-j} | 0 \rangle^N = e^{i\phi} | 0 \rangle^N$

This circuit is the starting point for our experiment.

Theory of KQD with real time-evolutions

Summary:

- Estimate $\mathbf{H}_{\mathbf{jk}}$, $\mathbf{S}_{\mathbf{jk}}$ via Hadamard(-ish) tests and repeated sampling.
- Depending on Hamiltonian, can avoid controlled time-evolutions using symmetry (particle number).
- Advantage: can use crude approximations for time-evolution to get low circuit depth.
- Time-evolution always approximated more accuracy requires more depth.

Experiments: single particle example

Experiments: k-particle subspaces

10-particle example

*extra complication: creating few unique layers

Aside: error analysis in the presence of noise

1-particle experimental results (56+1 qubits)

Target Hamiltonian: $H = \sum_{\langle i,j \rangle} (X_i X_j + Y_i Y_j + j_2 Z_i Z_j)$ with $\langle i,j \rangle \sim$ nearest neighbor on heavy-hex subgraph

Green = control qubit Red = initial excitation

Krylov space dimension

3-particle experimental results (44+1 qubits)

Target Hamiltonian: $H = \sum_{\langle i,j \rangle} (X_i X_j + Y_i Y_j + j_2 Z_i Z_j)$ with $\langle i,j \rangle$ ~nearest neighbor on heavy-hex subgraph

Green = control qubit Red = initial excitation

Krylov space dimension

5-particle experimental results (42+1 qubits)

Target Hamiltonian: $H = \sum_{\langle i,j \rangle} (X_i X_j + Y_i Y_j + j_2 Z_i Z_j)$ with $\langle i,j \rangle$ ~nearest neighbor on heavy-hex subgraph

Green = control qubit Red = initial excitation

Krylov space dimension