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Outline

Time permitting, I will discuss results of two recent large-scale ground state energy simulation 

experiments from IBM Quantum.

1. Many-body experiment using Krylov quantum diagonalization (arxiv:2407.14431)

2. Chemistry experiment using sample-based quantum diagonalization (arxiv:2405.05068)

Please interrupt with questions!



Expt #1: diagonalization of 
large many-body systems on 
a quantum processor

Goal: estimate ground state energy of quantum 
Hamiltonian.

Classically challenging due to exponential Hilbert 
space dimension*.

Outline of this section:

1. Overview of Krylov Quantum Diagonalization (KQD)

2. Experimental results
*Assuming general, hard case: sufficiently entangled, 
supported on exponentially-many basis states, etc. 4



Lanczos/Arnoldi method
= classical method for approximating lowest eigenvalues.

(Very) high-level idea:

1. Initial guess |"!⟩ ⇒ %|"!⟩ ⇒ ⋯ ⇒ %"#$|"!⟩

2. (*, ,) = project % onto span[|"!⟩, %|"!⟩, %%|"!⟩, . . . , %"#$|"!⟩]⏟

! "!! = " "!! = #,

3.     Lowest eigenvalue of ($, &) i.e., of $( = *&(, approximates lowest eigenvalue of !

Krylov space

5

V



Lanczos/Arnoldi method

Caveat: typically in classical Lanczos(-like) methods, would orthogonalize along the way… challenging in 
quantum implementations.

Advantage: converges exponentially with D (in ∞ precision arithmetic).

Disadvantage: classically, requires storing entire statevectors %'|"!⟩ ⇒ exponential overhead.

Can we construct a quantum version that mitigates statevector overhead
while keeping fast convergence?1

1 Parrish and McMahon, https://arxiv.org/abs/1909.08925; Motta et al., https://arxiv.org/abs/2312.00178;
and many more!

Recent review!
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Quantum “Lanczos method” = “Quantum Krylov”

Options for generating Krylov space: multiply |"!⟩ by…

• Powers of % — same as original Lanczos ⇒ nontrivial on quantum but possible in principle.1

• 1#()*+ — this version claimed “Qlanczos.”2

• 2)(%) — arises naturally from block encoding.3

• 1'()*+ — many good options e.g. Trotterization, qubitization, etc.

Will focus on last version in this talk. 

1Seki and Yunoki, PRX Quantum 2, 010333 (2021); 2Motta et al., Nat. Phys. 16, 205–210 (2020); 
3Kirby et al., Quantum 7, 1018 (2023). 7



Krylov Quantum Diagonalization with real time-evolutions

Majority of works have focused on Krylov states generated by real time-evolution:

3 = [|"!⟩, 5|"!⟩, 5%|"!⟩, . . . , 5"#$|"!⟩]  for 5 = 1'(*+

Need to estimate on quantum computer

*,- = ⟨"!|(5.)/%5)|"!⟩,

,,- = ⟨"!|(5.)/5)|"!⟩ 

for each 7, 8 = 0,1, . . . , ; − 1,

then classically calculate lowest eigenvalue of *= = >,= ⇒output.
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Aside: generalized eigenvalue problems

Regular eigenvalue problem: !" = $"

Generalized eigenvalue problem: !" = $%"

“Eigenvalue problem in non-orthonormal basis” ⇒ inner product is "/'", not "/"

Usually solve by converting to regular eigenvalue problem, e.g., '#$(" = $"

...but

here be dragons: if ' is ill-conditioned, then inverting it requires caution
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Estimating matrix elements (basic version)

Targets: *,- = ⟨"!|(5.)/%5)|"!⟩,      ,,- = ⟨"!|(5.)/5)|"!⟩ .

Hadamard… sorry!

Yields ⟨,⟩! = ./[⟨1"|(3#)$43%|1"⟩],      ⟨6⟩! = 78[⟨1"|(3#)$43%|1"⟩]

Can approach using Hadamard test:
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Estimating matrix elements (better version)

Change target: *,- = ⟨"!|%5)#.|"!⟩,   ,,- = ⟨"!|5)#.|"!⟩  for 8 ≥ 7 (below diag. use Hermitianity)

• Note: equal to ideal matrix elements if time-evolution exact.

This assumes 5)#.  preserves particle number; given this, expectation values come out to

⟨@⊗B⟩ = Re 1#'0⟨"!|B5|"!⟩ , ⟨E ⊗B⟩ = Im 1#'0⟨"!|B5|"!⟩ .

This circuit is the starting point for our experiment.

classically-calculable phase from 3%&#|0⟩' = /()|0⟩'
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Theory of KQD with real time-evolutions

Summary:

• Estimate *,-, ,,- via Hadamard(-ish) tests and repeated sampling.

• Depending on Hamiltonian, can avoid controlled time-evolutions using symmetry (particle number).

• Advantage: can use crude approximations for time-evolution to get low circuit depth.

• Time-evolution always approximated — more accuracy requires more depth.
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Experiments: single particle example

CNOT
• 1-particle example:|1"⟩ = |100. . . 0⟩
• 3%&#  approximated by 2 2nd-order Trotter steps

• Example circuit (only on 4 system qubits):

blue = control,
black = initial excitation

* = ∑
⟨",$⟩

-"-$ + /"/$ + 0&1"1$
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Experiments: k-particle subspaces

Clifford: apply classically to 
measured Pauli observables, yielding 
2(> + 2) measurement bases

Circuit on device 
ends here

GHZ state 
preparation

• 10-particle example: |1"⟩ = |101010. . . 10⟩
• 3%&#  approximated by @ Trotter steps

• 20 qubit example:

• Corresponding circuit looks like…

blue = control,
red = initial excitation,
edge colors = 2Q layers

* = ∑
⟨",$⟩

-"-$ + /"/$ + 0&1"1$
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10-particle example

GHZ state 
preparation

red layer green blue blue green red

2nd-order Trotter step

*extra complication: creating few unique layers
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Aside: error analysis in the presence of noise
Can show1 that energy error from a noisy quantum Krylov experiment is bounded as

1Epperly et al., https://arxiv.org/abs/2110.07492,
Kirby, https://arxiv.org/abs/2401.01246 

So one expects a result 
with this overall shape:

• = noise rate

• = initial state overlap

• = spectral gap

• = Krylov dimension

• ,       = positive free parameters

from noise from Krylov projectionfrom free parameter
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Plot
• Classical simulation, 2D 

Heisenberg model on heavy hex + 
sparse nonlocal interactions (1 
swap)

• 43 = 80 circuits in total
• 10" shots per circuit
• CNOT-depth= 26

https://arxiv.org/abs/2110.07492
https://arxiv.org/abs/2401.01246


1-particle experimental results (56+1 qubits)

Target Hamiltonian: % = ∑
⟨',.⟩

@'@. +E'E. + 7%J'J.   with ⟨K, 7⟩ ∼nearest neighbor on heavy-hex subgraph

Krylov space dimension
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Green = control qubit
Red = initial excitation
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3-particle experimental results (44+1 qubits)

Target Hamiltonian: % = ∑
⟨',.⟩

@'@. +E'E. + 7%J'J.   with ⟨K, 7⟩ ∼nearest neighbor on heavy-hex subgraph

Krylov space dimension
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Green = control qubit
Red = initial excitation
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5-particle experimental results (42+1 qubits)

Target Hamiltonian: % = ∑
⟨',.⟩

@'@. +E'E. + 7%J'J.   with ⟨K, 7⟩ ∼nearest neighbor on heavy-hex subgraph

Krylov space dimension
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Green = control qubit
Red = initial excitation
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