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Time permitting, I will discuss results of two recent large-scale ground state energy simulation

experiments from IBM Quantum.

1. Many-body experiment using Krylov quantum diagonalization (arxiv:2407.14431)

2. Chemistry experiment using sample-based quantum diagonalization (arxiv:2405.05068)

Please interrupt with questions!

a r",(lv > quant-ph > arXiv:2407.14431

\/ > quant-ph > arXiv:2405.05068
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Diagonalization of large many-body Hamiltonians on a quantum processor

Nobuyuki Yoshioka, Mirko Amico, William Kirby, Petar Jurcevic, Arkopal Dutt, Bryce Fuller, Shelly Garion, Holger Haas, lkko H:
Ritajit Majumdar, Zlatko Minev, Mario Motta, Bibek Pokharel, Pedro Rivero, Kunal Sharma, Christopher J. Wood, Ali Javadi-Ab}

The estimation of low energies of many-body systems is a cornerstone of computational quantum sciences. Variational quantum algorithms cai
states on pre-fault-tolerant quantum processors, but their lack of convergence guarantees and impractical number of cost function estimations
experiments to large systems. Alternatives to variational approaches are needed for large-scale experiments on pre-fault-tolerant devices. Her.
quantum processor to compute eigenenergies of quantum many-body systems on two-dimensional lattices of up to 56 sites, using the Krylov ¢
algorithm, an analog of the well-known classical diagonalization technique. We construct subspaces of the many-body Hilbert space using Trot
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Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer

Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, Petar Jurcevic, William Kirby, Simon Martiel, Kunal S|
Shirakawa, Iskandar Sitdikov, Rong-Yang Sun, Kevin J. Sung, Maika Takita, Minh C. Tran, Seiji Yunoki, Antonio Mezzacapc

A universal quantum computer can be used as a simulator capable of predicting properties of diverse quantum systems. Electronic structur
practical use cases around the hundred-qubit mark. This appears promising since current quantum processors have reached these sizes. F
onto quantum computers yields deep circuits, and for for pre-fault-tolerant quantum processors, the large number of measurements to es
prohibitive runtimes. As a result, realistic chemistry is out of reach of current quantum computers in isolation. A natural question is whethe
computation can relieve quantum processors from parsing all but a core, intrinsically quantum component of a chemistry workflow. Here, \



Expt #1: diagonalization of
large many-body systems on

a q U a. n t U m p rOCGSSO r 5-particle Heisenberg model on 42 qubits
x
20 \\\
Goal: estimate ground state energy of quantum {
Hamiltonian. 15 - <

Classically challenging due to exponential Hilbert 104

space dimension”. }1\ l

Outline of this section: 0 il

1. Overview of Krylov Quantum Diagonalization (KQD) 2 2 6 8 10

2. Experimental results

*Assuming general, hard case: sufficiently entangled, IBM Quantum
supported on exponentially-many basis states, etc. 4



Lanczos/Arnoldi method

= classical method for approximating lowest eigenvalues.

(Very) high-level idea:
Krylov space

1. Initial guess |Pg) = H| o) = - = HP~1a),) ‘/
2. (H,S) = project H onto span[[1o), H|o), H*|q), ..., HP 7 [1)o)]

\Y

3. Lowest eigenvalue of (H, S) i.e., of Hv = ASv, approximates lowest eigenvalue of H




Lanczos/Arnoldi method

Caveat: typically in classical Lanczos(-like) methods, would orthogonalize along the way... challenging in
quantum implementations.

Advantage: converges exponentially with D (in o precision arithmetic).

Disadvantage: classically, requires storing entire statevectors H|(o) = exponential overhead.

Can we construct a quantum version that mitigates statevector overhead
while keeping fast convergence??

Recent review!

/

1 Parrish and McMahon, https://arxiv.org/abs/1909.08925; Motta et al., https://arxiv.org/abs/2312.00178;
and many more!



Quantum “Lanczos method” = “Quantum Krylov”

Options for generating Krylov space: multiply |Y,) by...

« Powers of H — same as original Lanczos = nontrivial on quantum but possible in principle.t

o ¢ HKAL _ this version claimed “Olanczos.”?

e T (H) — arises naturally from block encoding.3

IHkdt

o e — many good options e.g. Trotterization, qubitization, etc.

Will focus on last version in this talk.

1Seki and Yunoki, PRX Quantum 2, 010333 (2021); 2Motta et al., Nat. Phys. 16, 205-210 (2020);
3Kirby et al., Quantum 7, 1018 (2023).



Krylov Quantum Diagonalization with real time-evolutions

Majority of works have focused on Krylov states generated by real time-evolution:

V = [lo) Ultho), U [o), ..., UP™H1ho)] for U = etHat

Need to estimate on quantum computer
ij = (1/10|(Uj)+HUk|¢o>’
Sie = (Yol (U)TU*[1ho)
foreachj,k=0,1,...,D — 1,

then classically calculate lowest eigenvalue of Hv = ASv =output.



Aside: generalized eigenvalue problems

Regular eigenvalue problem: Hv = Av
Generalized eigenvalue problem: Hv = ASv
“Eigenvalue problem in non-orthonormal basis” = inner product is vTSv, not vTv

Usually solve by converting to regular eigenvalue problem, e.g., S™1Hv = Av

...but

here be dragons: if § is ill-conditioned, then inverting it requires caution



Estimating matrix elements (basic version)

Targets: Hji = (Y| (U/)THU*[1)o),

Can approach using Hadamard test:

V/— Hadamard... sorry!

|O>a T

H

Sjk = (¢0|(Uj)JrUk|¢o) .

XorY

|

|

|%0)

Yields (X)q = Re[(¥o|(U)TPU* )],

Uk

P

(Y)q = Im[(Yo|(UNTPU*|3p)]




Estimating matrix elements (better version)

Change target: Hy, = (Wo|HUXT ¢hy), Sik = (Wo|UX T |}ho) fork = j (below diag. use Hermitianity)

« Note: equal to ideal matrix elements if time-evolution exact.

XorY
10)q H I ~ —
[ P
|0>N — %o-prep Uk—; Yo-prep X

This assumes U¥~J preserves particle number; given this, expectation values come out to

(XQP) = Re[e‘i¢(1p0|PU|¢0)],(Y X P) = [m[e_i¢(¢o|PU|1/Jo>]-

classically-calculable phase from U*~7|0)N = e!®|0)N

This circuit is the starting point for our experiment.
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Theory of KQD with real time-evolutions

Summary:

« Estimate Hik, Sjk via Hadamard(-ish) tests and repeated sampling.

« Depending on Hamiltonian, can avoid controlled time-evolutions using symmetry (particle number).
« Advantage: can use crude approximations for time-evolution to get low circuit depth.

- Time-evolution always approximated — more accuracy requires more depth.

12



Experiments: single particle example

XorY
|O>a H [ Q /7( H= (Z_)(Xin +YY; +jZZl-Zj)
LJ
[ P 4 o
|0>N — %o-prep Uk—j Yo-prep X

e UX=J approximated by 2 2"d-order Trotter steps

« 1-particle example:|po) = |100...0)

blue = control,

black = initial excitation
« Example circuit (only on 4 system qubits):

Q Qo Q Q
w N = =5

13



Experiments: k-particle subspaces

: XorY
10)a H : Q 7 H= 3 (XX + VY, + j2Z,Z))
. &
: [ P+ ——
|0)?Y —————— %o-prep Uk—; HH Yo-prep —X
\\ J :
GHZ state  Circuit on device K Clifford: apply classically to
preparation ends here measured Pauli observables, yielding

2(k + 2) measurement bases

« 10-particle example: [o) = |101010...10)

o Uk—J approximated by 7 Trotter steps

« 20 qubit example: blue = control,
red = initial excitation,
edge colors = 2Q layers

 Corresponding circuit looks like... 14



10-particle example

s 8 8 8§ 8 2 8 8 2 8
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GHZ state ~ v
preparation 2nd-order Trotter step
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5 & & &% & & ® & & B 8

15

*extra complication: creating few unique layers



Aside: error analysis in the presence of noise

Can show?! that energy error from a noisy quantum Krylov experiment is bounded as

H 1 7§ \ P
ene €O (<’ (efdordud el—n%'is«%é 6 ueﬂa}i aH<( oV ))
nergy ef@vgy lcbél X s l%‘mFg,_ g |ﬂl Sicti |

from free parameter from noise lt&qm @ykpvﬁ)gjgction

18 Q Heisenberg model (19 Q expt)

« Y0 = noise rate

-27.07 —— estimate o
o751 — exact « 7] =initial state overlap
3 —28.0 1 -D-= spectral gap
g 085 1 WA Krylov dimension
Soone expects a result a 290 1 . 5 , 5’ = positive free parameters
with this overall shape: g
® -29.5 1
E Plot
¢ 300  Classical simulation, 2D
3051 Heisenberg model on heavy hex +
sparse nonlocal interactions (1
-31.01 . swap)
12345678 91011121314151617181920 e 4D = 80 circuits in total

Krylov space dimension
1Epperly et al., https://arxiv.org/abs/2110.07492,
Kirby, https://arxiv.org/abs/2401.01246

e 10° shots per circuit
« CNOT-depth= 26
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https://arxiv.org/abs/2110.07492
https://arxiv.org/abs/2401.01246

1-particle experimental results (56+1 qubits)

Target Hamiltonian: H = ) (Xin + VY +j2Zl-Zj) with (i, J) ~nearest neighbor on heavy-hex subgraph

ground state energy estimate

52 4

50 A

48 A

46

44

(L.J)

1-particle Heisenberg model on 56 qubits

~
_____

4 6 8 10

Krylov space dimension

Green = control qubit
Red = initial excitation
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3-particle experimental results (44+1 qubits)

Target Hamiltonian: H = ) (Xin + VY +szl-Zj) with (i, J) ~nearest neighbor on heavy-hex subgraph

(L,J)
3-particle Heisenberg model on 44 qubits
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é n 6 8 20 Red = initial excitation

Krylov space dimension
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5-particle experimental results (42+1 qubits)

Target Hamiltonian: H = ) (Xin + VY +szl-Zj) with (i, J) ~nearest neighbor on heavy-hex subgraph

ground state energy estimate

20 1

15 A

10 A

(i,))
5-particle Heisenberg model on 42 qubits
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Krylov space dimension

Green = control qubit
Red = initial excitation
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